

# **Thaw and Culture Details**

| Cell Line Name                      | SA02                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WiCell Lot Number                   | SA02-DL-01                                                                                                                                                                                                                                                                                                                                                                                              |
| Parent Material                     | SA02-MCB-01                                                                                                                                                                                                                                                                                                                                                                                             |
| Provider                            | Cellartis                                                                                                                                                                                                                                                                                                                                                                                               |
| Banked By                           | WiCell                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thaw and Culture<br>Recommendations | WiCell recommends thawing 1 vial into 1 well of a 6 well plate.                                                                                                                                                                                                                                                                                                                                         |
| Culture Platform                    | Feeder Dependent                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | Medium: hESC Medium (KOSR)                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | Matrix: MEF                                                                                                                                                                                                                                                                                                                                                                                             |
| Protocol                            | WiCell Feeder Dependent Protocol                                                                                                                                                                                                                                                                                                                                                                        |
| Passage Number                      | p35<br>These cells were cultured for 34 passages prior to freeze. WiCell adds +1 to the passage number at freeze so that the number on the vial best represents the overall passage number of the cells at thaw.                                                                                                                                                                                        |
| Date Vialed                         | 08-May-2009                                                                                                                                                                                                                                                                                                                                                                                             |
| Vial Label                          | SA02-DL-01<br>P35 DF<br>08 MAY 2009<br>SOPCC035D                                                                                                                                                                                                                                                                                                                                                        |
| Biosafety and Use Information       | Appropriate biosafety precautions should be followed when working with these cells. The end user is responsible for ensuring that the cells are handled and stored in an appropriate manner. WiCell is not responsible for damages or injuries that may result from the use of these cells. Cells distributed by WiCell are intended for research purposes only and are not intended for use in humans. |

## **Testing Performed by WiCell**

| <b>T</b> 1 <b>D</b> 1 <b>H</b>     |                           |                       | <b>T</b> 10 10 11                    |                  |  |
|------------------------------------|---------------------------|-----------------------|--------------------------------------|------------------|--|
| Test Description                   | Test Provider             | Test Method           | Test Specification                   | Result           |  |
|                                    | WiCell                    | SOP-CH-003            | Expected karyotype                   | Pass             |  |
| Karyotype by G-banding             | Result from report: This  | is an abnormal kary   | otype, with trisomy 13 as the onl    | y clonal         |  |
| Karyotype by G-banding             | aberration detected. Tris | somy 13 was found i   | n all cells examined. The finding    | of trisomy 13 in |  |
|                                    | this culture is consister | nt with previous repo | rts of inherent trisomy 13 in this o | cell line.       |  |
| Post-Thaw Viable Cell Recovery     | WiCell                    | SOP-CH-305            | ≥ 15 Undifferentiated Colonies,      | Pass             |  |
| FOSt-THAW VIAble Cell Recovery     | WICEI                     | 30F-CH-303            | ≤ 30% Differentiation                | г азз            |  |
|                                    | UW Molecular              | PowerPlex 1.2         |                                      |                  |  |
| Identity by STR                    | Diagnostics Laboratory    | System by             | Match                                | Pass             |  |
|                                    | Diagnostics Laboratory    | Promega               |                                      |                  |  |
| Sterility - Direct transfer method | Apptec                    | 30744                 | No contamination detected            | Pass             |  |
| Mycoplasma                         | Bionique                  | M250                  | No contamination detected            | Pass             |  |
|                                    |                           | SOP-CH-101            |                                      |                  |  |
| Flow Cytometry for ESC Marker      | UW Flow Cytometry         | SOP-CH-102            | Bonort no specification              | Soo roport       |  |
| Expression                         | Laboratory                | SOP-CH-103            | Report - no specification            | See report       |  |
|                                    |                           | SOP-CH-105            |                                      |                  |  |

| Approval Date   | Quality Assurance Approval |  |  |  |
|-----------------|----------------------------|--|--|--|
| 08-January-2010 | 8/9/2017                   |  |  |  |

©2010 WiCell Research Institute

The material provided under this certificate has been subjected to the tests specified and the results and data described herein are accurate based on WiCell's reasonable knowledge and belief. Appropriate Biosafety Level practices and universal precautions should always be used with this material. For clarity, the foregoing is governed solely by WiCell's Terms and Conditions of Service, which can be found at http://www.wicell.org/privacyandterms.



*Report Date:* June 10, 2009

#### Case Details:

Cell Line: SA02-DL-1 (7755) Passage #: 38 Date Completed: 6/10/2009 Cell Line Gender: Female Investigator: National Stem Cell Bank Specimen: hESC on MEF feeder Date of Sample: 6/3/2009 Tests,Reason for: CH 2-1-3 Results: 47,XX,+13 Completed by MS, CLSp(CG), on 6/9/2009 Reviewed and interpreted by PhD,

, PhD, FACMG, on 6/10/2009

*Interpretation:* This is an abnormal karyotype, with trisomy 13 as the only clonal aberration detected. Trisomy 13 was found in all cells examined. The finding of trisomy 13 in this culture is consistent with previous reports of inherent trisomy 13 in this cell line.

| and the second sec | and the second sec | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (BEARING)                     |          | anifestive.         | Soundaries 5 | Cell: S01-01<br>Slide: A<br>Slide Type: Karyotyping                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|---------------------|--------------|---------------------------------------------------------------------------|
| and and a second s | anoxin<br>alifent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1942)<br>(1 | e distante<br>e distante<br>e | State 10 | 日本<br>日本<br>日<br>11 | 12<br>12     | Cell Results: Karyotype: 47,XX,+13<br># of Cells Counted: 20              |
| 00000<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000000<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 16<br>16 | 00000<br>17         | 00011<br>18  | # of Cells Karyotyped: 4<br># of Cells Analyzed: 8<br>Band Level: 425-550 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                            | 22       | and the second      | Y            |                                                                           |

Results Transmitted by Fax / Email / Post Sent By:\_\_\_\_\_ QC Review By: \_\_\_\_\_

| Date:             |  |
|-------------------|--|
| Sent To:          |  |
| Results Recorded: |  |



Histocompatibility/Molecular Diagnostics Laboratory

University of Wisconsin Hospital and Clinics

# Short Tandem Repeat Analysis\*

Sample Report: 7755-STR

UW HLA#: 61154

Sample Date: 06/18/09 Received Date: 06/18/09

Requestor: WiCell Research Institute Test Date: 06/23/09

File Name: 090624

Report Date: 06/26/09 Amended Report: 07/24/09

Sample Name: (label on tube)

7755-STR

Description: DNA Extracted by WiCell

258.36 ug/mL; 260/280 = 1.86

| Locus      | Repeat #  | STR Genotype |
|------------|-----------|--------------|
| D16S539    | 5,8-15    | 12,14        |
| D7S820     | 6-14      | 10,12        |
| D13S317    | 7-15      | 9,11,14      |
| D5S818     | 7-15      | 12,12        |
| CSF1PO     | 6-15      | 11,12        |
| TPOX       | 6-13      | 8,9          |
| Amelogenin | NA        | X,X          |
| TH01       | 5-11      | 9,9.3        |
| vWA        | 11, 13-21 | 14,16        |

Comments: Based on the 7755-STR DNA submitted by WI Cell dated 06/18/09 and received on 06/18/09, this sample (UW HLA# 61154) matches the STR profile of the human stem cell line SA02 comprising 16 allelic polymorphisms across the 8 STR loci analyzed (Josephson, R. et al., BMC Biol. 2006 Aug 18;4:28). Consistent with published results on the human embryonic stem cell line SA02 (Josephson, R. et al., BMC Biol. 2006 Aug 18;4:28), the 7755-STR DNA sample displays the tri-allelic genotype (9,11,14) at the D13S317 loci with each allele having approximately equal amplification strengths. No STR polymorphisms other than those corresponding to the human SA02 stem cell line were detected and the concentration of DNA required to achieve an acceptable STR genotype (signal/ noise) was equivalent to that required for the standard procedure (~1 ng/amplification reaction) from human genomic DNA. These results suggest that the 7755-STR DNA sample submitted corresponds to the SA02 stem cell line and it does not appear to be contaminated with any other human stem cells or a significant amount of mouse feeder layer cells. Sensitivity limits for detection of STR polymorphisms unique to either this or other human stem cell lines is ~5%.

Manager Date HLA/Molecular Diagnostics Laboratory

PhD, Director Date

HLA/Molecular Diagnostics Laboratory

\* Testing to assess engraftment following bone marrow transplantation was accomplished by analysis of human genetic polymorphisms at STR loci. This methodology has not yet been approved by the FDA and is for investigational use only.

This report is confidential. No part may be used for advertising or public announcement without written permission. Results apply only to the sample(s) tested.



Report Number 809726 Page 4 of 7

June 04, 2009 P.O. #:

WiCell Research Institute

### STERILITY TEST REPORT

Sample Information:

hES Cells 3: SA02-DL-1 #6700

| Date Received:  | May 19, 2009  |
|-----------------|---------------|
| Date in Test:   | May 20, 2009  |
| Date Completed: | June 03, 2009 |

**Test Information:** 

Test Codes: 30744, 30744A Immersion, USP / 21 CFR 610.12 Procedure #: BS210WCR.201

| TEST PARAMETERS           | PRODUCT        |                |  |  |  |  |
|---------------------------|----------------|----------------|--|--|--|--|
| Approximate Volume Tested | 0.5 mL         | 0.5 mL         |  |  |  |  |
| Number Tested             | 2              | 2              |  |  |  |  |
| Type of Media             | SCD            | FTM            |  |  |  |  |
| Media Volume              | 400 mL         | 400 mL         |  |  |  |  |
| Incubation Period         | 14 Days        | 14 Days        |  |  |  |  |
| Incubation Temperature    | 20 °C to 25 °C | 30 °C to 35 °C |  |  |  |  |
| RESULTS                   | 2 NEGATIVE     | 2 NEGATIVE     |  |  |  |  |

Page 1 Signed

**QA Reviewer** 

Page 1 Signed

Date

**Technical Reviewer** 

Date

Testing conducted in accordance with current Good Manufacturing Practices.



| Mycoplasma<br>Testing Services Safe<br>Cells         | s.                                                 | E      | IONIOUE | TESTING | LABORATORIES, | INC. |
|------------------------------------------------------|----------------------------------------------------|--------|---------|---------|---------------|------|
| APPENDIX IV                                          |                                                    | • .    |         |         |               | Page |
| Document#:<br>Edition#:<br>Effective Date:<br>Title: | DCF3013D<br>10<br>07/15/2003<br><b>M-250 FINAL</b> | REPORT | SHEET   |         |               |      |

M-250 FINAL REPORT

Direct Specimen Culture Procedure 3008, 3011, 3013

TO: Wicell OA

BTL SAMPLE ID#: 57733

P.O.#:

DATE REC'D: 06/16/2009

Page 1 of 2

TEST/CONTROL ARTICLE:

SA02-DL-01-I #7755

LOT#: NA

| DIRECT CULTURE SET-UP (DAY 0) | DATE:              | 06/17/200        | 9          |
|-------------------------------|--------------------|------------------|------------|
| INDICATOR CELL LINE (VERO)    | SEE DNA FLUOROCHRO | OME RECORD SHEET |            |
|                               |                    |                  | DATE       |
| THIOGLYCOLLATE BROTH          | DAY 7 +            | Θ                | 06/24/2009 |
| · .                           | DAY 28 +           | Θ                | 07/15/2009 |
| BROTH-FORTIFIED COMMERCIAL    |                    |                  |            |
| 0.5 mL SAMPLE                 | DAY 7 +            | Θ                | 06/24/2009 |
| 6.0 mL BROTH                  | DAY 28 +           | Ξ                | 07/15/2009 |
| BROTH-MODIFIED HAYFLICK       |                    |                  |            |
| 0.5 mL SAMPLE                 | DAY 7 +            | Θ                | 06/24/2009 |
| 6.0 mL BROTH                  | DAY 28 +           | Θ                | 07/15/2009 |
| BROTH-HEART INFUSION          |                    | ~                |            |
| 0.5 mL SAMPLE                 | DAY 7 +            | Θ                | 06/24/2009 |
| 6.0 mL BROTH                  | DAY 28 +           | $\bigcirc$       | 07/15/2009 |
|                               |                    |                  |            |

(See Reverse)

APPENDIX IV

| Document#:                       | DCF30131 | D                         |             |             |                         |                                        |
|----------------------------------|----------|---------------------------|-------------|-------------|-------------------------|----------------------------------------|
| Edition#:                        | 10       |                           |             |             |                         |                                        |
| Effective Date:                  | 07/15/20 | 03                        |             |             |                         |                                        |
| Title:                           | M-250 F  | INAL REPORT               | SHEET       |             |                         |                                        |
| SAMPLE ID#: 57                   | 733      |                           | AERO        | BIC         | MICROAEROPHILIC         | DATE                                   |
| AGAR PLATES-FORTIN<br>COMMERCIAL | FIED     | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ | 0<br>0<br>0 | + ()<br>+ ()<br>+ ()    | 06/24/2009<br>07/01/2009<br>07/08/2009 |
| AGAR PLATES-MODIF:<br>HAYFLICK   | IED      | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ | 9<br>9<br>9 | + (0)<br>+ (1)<br>+ (1) | 06/24/2009<br>07/01/2009<br>07/08/2009 |
| AGAR PLATES-HEART<br>INFUSION    |          | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ |             | + ()<br>+ ()<br>+ ()    | 06/24/2009<br>07/01/2009<br>07/08/2009 |
| BROTH SUBCULTURES                | (DAY 7)  |                           | DATE:       | 06          | 5/24/2009               |                                        |
| AGAR PLATES-FORTI<br>COMMERCIAL  | FIED     | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ | ΘΘΘ         | + (-)<br>+ (-)<br>+ (-) | 07/01/2009<br>07/08/2009<br>07/15/2009 |
| AGAR PLATES-MODIF<br>HAYFLICK    | IED      | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ | 000         | + ©<br>+ ©<br>+ ©       | 07/01/2009<br>07/08/2009<br>07/15/2009 |
| AGAR PLATES-HEART<br>INFUSION    |          | DAY 7<br>DAY 14<br>DAY 21 | +<br>+<br>+ | 0<br>0<br>0 | + ①<br>+ ④<br>+ ①       | 07/01/2009<br>07/08/2009<br>07/15/2009 |

RESULTS: No detectable mycoplasmal contamination

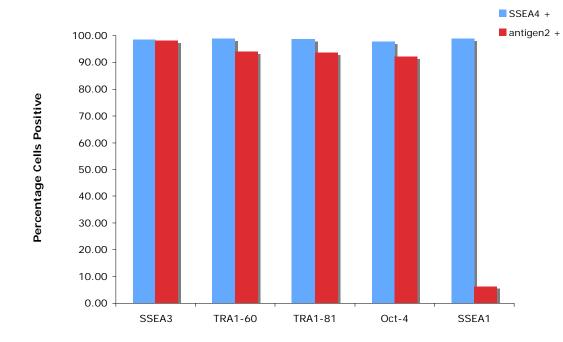
1.15.09

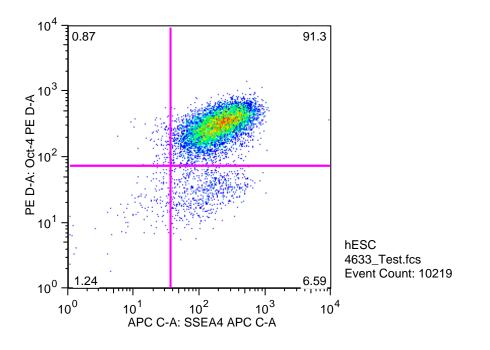
Date

Laboratory Director / Ph.D.

M-250 Procedural Summary: The objective of this test is to ascertain whether or not detectable mycoplasmas are present in an <u>in vitro</u> cell culture sample, be it a primary culture, hybridoma, master seed stock or cell line. This procedure combines an indirect DNA staining approach to detect inno-cultivable mycoplasmas with a direct culture methodology utilizing three different mycoplasmal media formulations. The indirect approach involves the inoculation of the sample into a mycoplasma-free VERO (ATCC) indicator cell line and performing a DNA fluorochrome assay after 72-120 hours of incubation. The direct culture aspect of the tast utilizes three different mycoplasmal media including both broth and agar formulations. The sample is inoculated into each of the 3 broth formulations and also onto duplicate plates (0.1 mL/plate) for each of the 3 agar formulations. Subculture from broth to fresh agar plates is carried out after 7 days incubation. Agar plates are incubated aerobically and microaerophillically in order to detect any colony forming units morphologically indicative of mycoplasmal contamination. Issuance of the final report with signature of the Laboratory Director signifies that the required controls were performed concurrently with the test sample(s) as detailed in the referenced SOPs and that all test conditions have been found to meet the required acceptance criteria for a valid test, including the appropriate results for the positive and negative controls. Tessing Services Safe Cells

MYCOPLASMA TESTING SERVICES


BIONIOUE TESTING LABORATORIES, INC


| ocument #:<br>dition #:<br>ffective date: | DCF3008A<br>06<br>9/17/2003 |                                  |                  | · ·                                |                                       |
|-------------------------------------------|-----------------------------|----------------------------------|------------------|------------------------------------|---------------------------------------|
| itle:                                     | DNA FLUOI                   | ROCHROME                         | ASSAY RE         | SULTS                              |                                       |
|                                           |                             | ROCHROMEAS                       |                  | ĨS.                                |                                       |
| Sample ID # <u>57733</u>                  | <u>M-250</u>                | Date Rec'd:                      | <u>06/16/200</u> | 9 P.O. #                           |                                       |
| Indicator Cells Inoculated:               | Date/Initials:              | 6/18/09                          | /H               | 5                                  |                                       |
| Fixation:                                 | Date/Initials:              | 62209                            | / <b>k</b>       | 6                                  | •                                     |
| Staining:                                 | Date/Initials:              | 6/22/09                          | K                | 6                                  | •                                     |
| TEST/CONTROL ARTICLE:                     |                             | 1                                | ·                | · · ·                              | •••••                                 |
| SA02-DL-01-I #7755                        | •                           | • .                              |                  |                                    |                                       |
| LOT# <u>NA</u>                            | ,<br>-                      | •                                |                  |                                    |                                       |
| Wicell OA                                 |                             |                                  |                  | • •                                | •<br>•                                |
|                                           |                             |                                  |                  |                                    | · · ·                                 |
| DNA FLUOROCHROME                          | ASSAY RESUI                 | .TS:                             | ·                |                                    |                                       |
| <u>×</u> NEGATIVE:                        |                             | vith staining l<br>smal contamir |                  | ne nuclear regi                    | on, which indicat                     |
| POSITIVE:                                 |                             | t amount of ex<br>al contaminati |                  | staining whic                      | h strongly sugges                     |
| INCONCLUS                                 | SIVE:                       |                                  |                  |                                    |                                       |
| ·                                         | Ŷ                           |                                  |                  | staining consis<br>ear degeneratio | tent with low - lev<br>on.            |
| ······································    | fungal or ot                |                                  | contamina        | int or viral CP                    | stent with bacteri<br>E. Morphology r |
|                                           |                             |                                  |                  |                                    |                                       |
| COMMENTS:                                 | <u> </u>                    |                                  | <u> </u>         | <u> </u>                           |                                       |



Procedures performed: SOP-CH-101 SOP-CH-102 SOP-CH-103 SOP-CH-105 Cell Line: SA02-DL-01 Passage Sample ID: 4633-FAC **Date of:** (*mm/dd/yy*) acquisition: 11/23/09 file creation: 11/23/09 file submission: 11/24/09

|           | SSEA4 -           | SSEA4 +           | SSEA4 +    | SSEA4 -    | ALL     | ALL               |
|-----------|-------------------|-------------------|------------|------------|---------|-------------------|
| antigen2: | <u>antigen2 +</u> | <u>antigen2 +</u> | antigen2 - | antigen2 - | SSEA4 + | <u>antigen2 +</u> |
| SSEA3     | 0.86              | 97.30             | 1.18       | 0.62       | 98.48   | 98.16             |
| TRA1-60   | 0.25              | 93.80             | 5.06       | 0.91       | 98.86   | 94.05             |
| TRA1-81   | 0.27              | 93.50             | 5.23       | 1.02       | 98.73   | 93.77             |
| Oct-4     | 0.87              | 91.30             | 6.59       | 1.24       | 97.89   | 92.17             |
| SSEA1     | 0.11              | 6.26              | 92.70      | 0.89       | 98.96   | 6.37              |



